4,527 research outputs found

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Early Neoproterozoic limestones from the Gwna Group, Anglesey

    Get PDF
    Limestone megaclasts up to hundreds of metres in size are present within the Gwna Group mélange, North Wales, UK. The mélange has been interpreted as part of a Peri-Gondwanan fore-arc accretionary complex although the age of deposition remains contentious, proposals ranging from Neoproterozoic to Early Ordovician. This paper uses strontium isotope chemostratigraphy to establish the age of the limestone blocks and thus provide a maximum age constraint on mélange formation. Results show that, although the carbonates are locally dolomitized, primary 87Sr/86Sr ratios can be identified and indicate deposition sometime between the late Tonian and earliest Cryogenian. This age is older than that suggested by stromatolites within the limestone and indicates that the limestone did not form as cap carbonate deposits

    Ocean acidification in the aftermath of the Marinoan glaciation

    Get PDF
    Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth’s global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled δ11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater

    <sup>87</sup>Sr/<sup>86</sup>Sr chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: constraints on depositional ages and time scales

    Get PDF
    New calcite &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr data for 47 limestones from the metamorphosed and deformed Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland are used to identify secular trends in seawater &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr through the Dalradian succession and to constrain its depositional age. Dalradian limestones commonly have Sr greater than 1000 ppm, indicating primary aragonite and marine diagenesis. Low Mn, Mn/Sr less than 0.6, ë&lt;sup&gt;18&lt;/sup&gt;O and trace element data indicate that many &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr ratios are unaltered since diagenesis despite greenschist- to amphibolite-facies metamorphism, consistent with the documented behaviour of Sr and O during metamorphic fluid-rock interaction. Thus, the &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr data are interpreted largely to reflect &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr of coeval seawater. Currently available data show that Neoproterozoic seawater &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr rose from c. 0.7052 at 850-900 Ma to c. 0.7085 or higher in the latest Neoproterozoic. Temporal changes at c. 800 Ma and c . 600 Ma bracket the range in &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr values of calcite in Grampian. Appin and lowest Argyll Group (c.0.7064-0.7072) and middle and uppermost Argyll Group (c. 0.7082-0.7095) limestones, consistent with a rise in seawater &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr around 600 Ma. &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr data are consistent with the sedimentary affinity of the Islay Subgroup with the underlying Appin Group, and with a possible time interval between deposition of Islay and Easdale Subgroup rocks. They indicate that the Dalradian, as a whole, is younger than c. 800 Ma

    Metal sources for the Katanga Copperbelt deposits (DRC) insights from Sr and Nd isotope ratios

    Get PDF
    The ore deposits of the Central African Copperbelt formed during a multiphase mineralisation process. The basement underlying the Neoproterozoic Katanga Supergroup that hosts the ore, demonstrates the largest potential as metal source. Various ore deposits that formed during different mineralisation phases are taken as case studies, i.e. Kamoto, Luiswishi, Kambove West, Dikulushi and Kipushi (Democratic Republic of Congo, DRC). The Sr and Nd isotopic compositions of gangue carbonates associated with these deposits is determined and compared with those of rocks from several basement units, bordering or underlying the Copperbelt, to infer the metal sources. The mineralising fluid of diagenetic stratiform Cu-Co mineralisation interacted with felsic basement rocks underlying the region. The Co from these deposits is most likely derived from mafic rocks, but this is not observed in the isotopic signatures. Syn-orogenic, stratabound Cu-Co mineralisation resulted mainly from remobilisation of diagenetic sulphides. A limited, renewed contribution of metals from felsic basement rocks might be indicated by the isotope ratios in the western part of the Copperbelt, where the metamorphic grade is the lowest. The mineralising fluid of syn- and post-orogenic, vein-type mineralisations interacted with local mafic rocks, and with felsic basement or siliciclastic host rocks

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    The Lomagundi-Jatuli carbon isotopic event recorded in the marble of the Tandilia System basement, Río de la Plata Craton, Argentina

    Get PDF
    The “Lomagundi-Jatuli event” corresponds to the most important δ13C positive anomaly (≥5‰) globally reported in Palaeoproterozoic marine carbonates (between ∼2.30 and 2.06 Ga). In the Tandilia System (Argentina), Río de la Plata Craton, this event was recorded in the basement marble of the San Miguel area. The calcite-diopside marble, hosted by biotite gneiss and intruded by 2.12 Ga garnet-leucogranite, was metamorphosed in amphibolite facies during the Transamazonian Cycle. PAAS-normalised rare-earth elements (REE) and Y for the carbonate rocks are HREE-enriched and display positive Eu and Y anomalies, typical of primary precipitates from a mixed hydrothermal-marine environment carbonate. Additionally, a truly negative Ce anomaly for all the samples indicates that the depositional environment was oxidising. Positive δ13C values ranging from +5.90 to +4.30‰ (V-PDB), and δ18O from +17.45 to +13.84‰ (V-SMOW) were determined in this marble, both gradually decreasing towards the contact with the leucogranites. These values indicate that devolatilization reactions took place during the crystallisation of a wollastonite-vesuvianite-grossular-diopside skarn generated by the leucogranite intrusions into the marble. δ18O values obtained from diopside and calcite crystals, in the marble sectors furthest from the contacts with leucogranite, allowed a 663–623 °C formation temperature to be calculated, considering oxygen in a calcite-diopside geothermometric pair. These temperatures are consistent with the metamorphic degree (amphibolite facies) reached in this portion of the basement. Although the San Miguel marble shows petrographic and mineralogical evidence of regional and contact metamorphism, important geochemical and isotopic characteristics, together with its estimated Palaeoproterozoic age, indicate that the marble protolith was a marine carbonate deposited during the “Lomagundi-Jatuli event”.Fil: Lajoinie, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; ArgentinaFil: Lanfranchini, Mabel Elena. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; ArgentinaFil: Recio, C.. Universidad de Salamanca; EspañaFil: Sial, A.N.. Federal University of Pernambuco; BrasilFil: Cingolani, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Ballivian Justiniano, Carlos Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Etcheverry, Ricardo Oscar. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits

    Get PDF
    Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between −8.1‰ and −6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition

    A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth

    Get PDF
    The strontium isotope composition of seawater is strongly influenced on geological time scales by changes in the rates of continental weathering relative to ocean crust alteration. However, the potential of the seawater 87Sr/86Sr curve to trace globally integrated chemical weathering rates has not been fully realised because ocean 87Sr/86Sr is also influenced by the isotopic evolution of Sr sources to the ocean. A preliminary attempt is made here to normalise the seawater 87Sr/86Sr curve to plausible trends in the 87Sr/86Sr ratios of the three major Sr sources: carbonate dissolution, silicate weathering and submarine hydrothermal exchange. The normalised curve highlights the Neoproterozoic-Phanerozoic transition as a period of exceptionally high continental influence, indicating that this interval was characterised by a transient increase in global weathering rates and/or by the weathering of unusually radiogenic crustal rocks. Close correlation between the normalised 87Sr/86Sr curve, a published seawater δ34S curve and atmospheric pCO2 models is used here to argue that elevated chemical weathering rates were a major contributing factor to the steep rise in seawater 87Sr/86Sr from 650 Ma to 500 Ma. Elevated weathering rates during the Neoproterozoic-Cambrian interval led to increased nutrient availability, organic burial and to the further oxygenation of Earth's surface environment. Use of normalised seawater 87Sr/86Sr curves will, it is hoped, help to improve future geochemical models of Earth System dynamics

    Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK : Deep marine trace element enrichment during the Second Great Oxygenation Event

    Get PDF
    We are grateful to John Still for his skilled technical support and the ACEMAC facility at the University of Aberdeen. Research funded by NERC grant NE/M010953/1 and NERC facility grant IP-1631-0516. AJB is funded by NERC support of the Isotope Community Support Facility SUERC. The authors thank Eva Stüeken, Ross Large and one anonymous reviewer for their constructive feedback on the original manuscript.Peer reviewedPublisher PD
    corecore